偏微分方程系列报告
温焕尧教授学术报告
报告题目:Optimal time decay rate of incompressible nematic liquid crystals flow in three dimensions
报告人:温焕尧教授(华南理工大学)
报告时间:2019年5月17日上午8:30-9:10
报告地点:5号教学楼5511
报告摘要:In this talk, we introduce a recent work on optimal time-decay rates in L^r norm for r>=1 of global strong solutions to the incompressible nematic liquid crystals flows in half space, provided the initial value are small in L^3 norm.
报告人简介:温焕尧,男,教授,博士生导师,国家优秀青年基金获得者,广东省青年珠江学者,现为华南理工大学古天乐代言太阳集团网址副经理。主要从事流体力学中的偏微分方程的数学理论研究。研究成果发表在Adv. Math.、Arch. Rational Mech. Anal.、J. Differential Equations、J. Functional Analysis、J. Math. Pures Appl.、Math. Models Meth. Appl. Sci.、SIAM J. Math. Anal.等杂志。先后主持中国博士后科学基金面上项目、特别资助项目,国家自然科学基金青年项目、面上项目和优秀青年科学基金项目。
姚磊教授学术报告
报告题目:Hydrodynamic limit for 2D inhomogeneous incompressible Navier-Stokes/Vlasov-Fokker-Planck equations
报告人:姚磊教授(西北大学)
报告时间:2019年5月17日上午9:15-9:55
报告地点:5号教学楼5511
报告摘要: We study the hydrodynamic limit for inhomogeneous incompressible Navier-Stokes/Vlasov-Fokker-Planck equations in a two-dimensional bounded domain. The proof relies on the relative entropy argument and a compactness result $L_M\hookrightarrow\hookrightarrow H^{-1}$ of Orlicz spaces in 2D to obtain the corresponding strong convergence. This result also holds for 3D case, thus extends the works of Goudon-Jabin-Vasseur[Indiana Univ. Math. J., 53(2004)] and Mellt-Vasseur [Comm. Math. Phys., 281(2008)] from incompressible and compressibleNavier-Stokes/Vlasov-Fokker-Planck equations to inhomogeneous incompressible Navier-Stokes/Vlasov-Fokker-Planck equations.
报告人简介:姚磊,西北大学教授,博士生导师,2010年在华中师范大学获理学博士学位;曾获全国百篇优秀博士学位论文奖、陕西省杰出青年科学基金、陕西省青年科技新星。主要从事流体力学中的偏微分方程数学理论的研究,在 Math. Ann.、JMPA、AIHP、SIAM、JDE等国际刊物发表学术论文30余篇。
彭红云博士学术报告
报告题目:Asymptotic stability of the solutions for a singular Chemotaxis system
报告人:彭红云博士(广东工业大学)
报告时间:2019年5月17日上午10:00-10:40
报告地点:5号教学楼5511
报告摘要:This talk concerns the Cauchy problem of a parabolic-hyperbolic system derived from a chemotaxis model describing the dynamics of the initiation of tumor angiogenesis. It is shown that, as time tends to infinity, the Cauchy problem with large-amplitude discontinuous data admit global weak solutions which converge to constant states if the asymptotic states of the initial value at far field are equal or to viscous shock waves with large amplitude if the asymptotic states of the initial value at far field are equal. Our results improve the previous results where initial data was required to be continuous and have small amplitude. This is based on a joint work with Zhian Wang and Changjiang Zhu.
报告人简介:彭红云,男,现为广东工业大学讲师,硕士生导师。2015年博士毕业于华中师范大学,先后在华南理工大学和香港理工大学从事博士后研究。主要从事流体力学及其相关模型解的适定性研究。在SIAM、JDE、ZAMP等国际刊物发表学术论文10余篇。
訾瑞昭博士学术报告
报告题目:Dispersive effect and global well-posedness of the compressible viscoelastic fluids
报告人:訾瑞昭博士(华中师范大学)
报告时间:2019年5月17日上午10:45-11:25
报告地点:5号教学楼5511
报告摘要:This talk is concerned with the global well-posedness issue of the compressible viscoelastic fluids in the whole space R^N, N≥2. The proof relies on the dispersive estimates to the linearized hyperbolic system combined with energy estimates to the hyperbolic-parabolic system. By exploiting the intrinsic structure of the system under some physical restrictions, we find that the compressible viscoelastic fluids admits a unique global solution with a class of large initial data in the sense of critical L^2 framework. This was a joint work with Dr Bin Han in Hangzhou Dianzi University.
报告人简介:訾瑞昭博士,2013年博士毕业于浙江大学,现为华中师范大学数学与统计学院副教授,主要研究方向为流体力学中的偏微分方程,在Archive for Rational Mechanics and Analysis、Journal of Functioal Analysis、Journal of Differential Equations等国际主流数学杂志发表论文多篇。先后主持国家自然科学基金青年项目和面上项目。
欢迎各位老师、同学届时前往!